
Tekkotsu Quick Reference
ERS-220, Tekkotsu 3.0

Ethan Tira-Thompson

1 Building

1.1 Environment Variables
Values can be set in project/Environment.conf, a shell
environment variable, or the make command line. Each con-
figuration method overrides values from prior methods.
� OPENRSDK ROOT - Location of OPEN-R SDK installation

(default /usr/local/OPEN R SDK)

� TEKKOTSU ROOT - Location of Tekkotsu installation
(default /usr/local/Tekkotsu)

� MEMSTICK ROOT - Location of memory stick mount point
(default tries to autodetect – Mac OS X users should get something in
/Volumes/..., Cygwin users will want something like /cygdrive/e,
Linux defaults to /mnt/memstick)

� TEKKOTSU TARGET PLATFORM - Can be set to either
PLATFORM APERIOS (the Aibo’s OS, default) or
PLATFORM LOCAL (host machine’s OS, local execution).

� TEKKOTSU TARGET MODEL - Can be set to one of the
supported robot models: TGT ERS210, TGT ERS220,
TGT ERS2xx (dual boot either 210 or 220), TGT ERS7 (default).

� TEKKOTSU ALWAYS BUILD - If any non-empty string
(default), update libtekkotsu.a prior to each project
build. Turn off if TEKKOTSU ROOT is in a read-only
location, such as a shared directory in a computer lab.

See also additional options and documentation in
project/Environment.conf

1.2 Build Targets
The following targets are available as targets to the make com-
mand, from within a project directory:
� all - Builds source into binary executables.
� newstick - Erases memory stick, copies fresh system

files
� install - Builds all, copies project’s ms directory to

memory stick (may require previous make newstick)
� update - Builds all, selectively copies newer files from
ms to memory stick (requires rsync)

� sim - Builds the project for local simulation, equivalent to
all with TEKKOTSU TARGET PLATFORM set to
PLATFORM LOCAL

� clean, cleanProj, cleanDeps - Erases all, just
project, or dependancy (.d) build files

The following targets are available to make from within the
main Tekkotsu directory:
� all - Updates [build/.../]libtekkotsu.a for each

supported platform
� compile - Updates [build/.../]libtekkotsu.a for only

the current platform (see TEKKOTSU TARGET PLATFORM)

2 Execution

2.1 Console
You can view text output from code running on the AIBO by
using a telnet connection. You can filter the output you wish
to receive by selecting a port number below. Any output sent
to a port which is unconnected will be redirected to the one
listed below it.
� 10002 - Output from Main process’s serr (e.g.
serr->printf(...)). Theoretically ”blocking”, but
some output can still be lost in the system network buffers
during a crash. Input from client is ignored.

� 10001 - Output from Main process’s sout. Non-blocking
for fast thoroughput, but will lose most recent data sent if
crash occurs. Input is interpreted as ControllerGUI
commands if no GUI is connected, otherwise each line of
input is broadcast as a TextMsgEvent.

� 59000 - The system output console, catches all output
from the operating system itself, cout, cerr or basic
printf. Non-blocking, buffered output, blocking input
(don’t use cin).

2.2 Controller
You can send these commands to port 10001 (assuming
tekkotsu.cfg’s main.consoleMode is the default value), the
GUI port 10020 (if GUI not connected), or the GUI’s scripts
or “Send Input” field. All commands start with ‘!’. The in-
put field will prefix non-commands with !input. Use quotes
around multi-word arguments.
� !reset - return to the root menu
� !next - hilight the next menu item
� !prev - hilight the previous menu item
� !select [item] - trigger activate of currently hilighted

menu items, unless item is specified, in which case
Controller will search from the root for an entry of the
same name and trigger it if found

� !cancel - move up/back a menu level
� !msg text - broadcasts text as a TextMsgEvent
� !root item [subitem ...] - triggers indicated items to drill

down from root to a specified subitem. Doesn’t change
current menu location unless final item is a menu itself.

� !hilight [n1 [n2 ...]] - Selects listed item indicies, can
select multiple at once

� !input text - Passes text as input to the currently
hilighted item(s), can be used to move directly to a
submenu, specify a filename to save data into, set a
corresponding variable, etc., depending on the context.

� !set section.key=value - sets a configuration variable,
overriding the default found in tekkotsu.cfg for
remainder of the current session only



3 Model Specification
Each supported robot model is specified by an “Info” header
file in Shared, e.g. Shared/ERS220Info.h, which defines
the constants shown in this section. These files can also alias
symbols found on other models to aid in portability between
models. Shared/RobotInfo.h should be used to automati-
cally include the proper header for the current target model
and bring its constants into the global namespace.

3.1 Output Offsets
“Outputs” (i.e. Joints, LEDs) are refered to by index (“off-
set”) value. These values are formed by specifying a sec-
tion offset, plus a specific offset. Sections are typically gen-
eral across robot models, whereas the specifics are model-
dependent (but can be aliased to provide compatability).

For most joints, the positive direction is “up”, and the 0 po-
sition yields a forward looking, fully extended standing pos-
ture.
� {L,R}{Fr,Bk}LegOffset - NumLegs combinations, each with
JointsPerLeg items
+ RotatorOffset: positive moves “out”, away from body
+ ElevatorOffset: positive moves up, away from body
+ KneeOffset: positive bends knee (slight negative possible)

� HeadOffset - NumHeadJoints items
+ TiltOffset: positive looks up
+ PanOffset: positive looks left
+ RollOffset: positive rotates view counter-clockwise

� LEDs: these are all direct offsets, and do not need to be added to
anything else
� FaceFrontLeftLEDOffset, FaceFrontRightLEDOffset,

FaceCenterLeftLEDOffset, FaceCenterRightLEDOffset - blue,
FaceBackLeftLEDOffset, FaceBackRightLEDOffset - red

� ModeLEDOffset - mode indicator (back of the head - orange)
� BackLeft1LEDOffset, BackLeft2LEDOffset,

BackLeft3LEDOffset, BackRight3LEDOffset,
BackRight2LEDOffset, BackRight1LEDOffset

� TailLeftLEDOffset (blue), TailCenterLEDOffset (red),
TailRightLEDOffset (blue)

� FaceFrontALEDOffset (blue), FaceFrontBLEDOffset (blue),
FaceFrontCLEDOffset (red)

� RetractableHeadLEDOffset - retractable head light

It happens that these joints can also be grouped by the type of
joint, so there are additionally a few other offsets that can be
used in order to loop across a group of joints:
� PIDJointOffset - NumPIDJoints items, servos using PID

control
� LegOffset - NumLegJoints items, a subset of PID servos

corresponding to the leg joints
� LEDOffset - NumLEDs items
� BinJointOffset - NumBinJoints items, solenoids, such as the

ears (if any) which flip between two positions
� NumOutputs - total number of outputs available

LEDs are often handled in groups to display patterns. Some
functions take an LEDBitMask t parameter, which allows you
to specify a set of LEDs in a single parameter. For any given
LED offset fooLEDOffset, the corresponding bitmask con-
stant is fooLEDMask. Alternatively, you could calculate the
bitmask of foo by 1<<(foo-LEDOffset).

3.2 Reference Frames
Every PID joint has an associated reference frame, with the z
axis along the axis of rotation. You can use the Output Offsets
previously listed to refer to these reference frames. However,
there are a few additional reference frames you may wish to
refer, which do not correspond to any particular joint:
� BaseFrameOffset - body center, x forward, y Aibo’s left, z up
� PawFrameOffset - NumLegs items, in the usual LegOrder t,

defines the reference frame of the passive ankle joint
� CameraFrameOffset - The coordinate system used for vision,

origin in the center of the image, x right, y down, z into the scene
� IRFrameOffset - z axis aligned with the IR beam

3.3 Buttons
Primarily used with WorldState, i.e. state->buttons[x].
The antenna buttons (marked with a *) are “pressure” sen-
sitive, but jump between threshold values (not a continuous
response).

LFrPawOffset ChinButOffset BackButOffset

RFrPawOffset HeadFrButOffset* TailLeftButOffset

LBkPawOffset HeadBkButOffset* TailCenterButOffset

RBkPawOffset TailRightButOffset

3.4 Sensors
Primarily used with WorldState, i.e. state->sensors[x]

BAccelOffset IRDistOffset PowerCapacityOffset

LAccelOffset PowerRemainOffset PowerVoltageOffset

DAccelOffset PowerThermoOffset PowerCurrentOffset

3.5 Limits
outputRanges defines the range of values available for
each output. MaxOutputSpeed defines the maximum rec-
ommended speed for each output (0 indicates no limit, e.g
LEDs).

4 Development

4.1 Events
These constants are defined by the EventBase::EventGeneratorID t
enumeration. For more information about the events sent by
each generator, see EventBase documentation. Each of these
constants will need to be prefixed with EventBase::.
unknownEGID,
aiEGID,
audioEGID,
buttonEGID,
erouterEGID,
estopEGID,
locomotionEGID,
lookoutEGID,
mapbuilderEGID,
micOSndEGID,
micRawEGID,
micFFTEGID,

micPitchEGID,
motmanEGID,
pilotEGID,
powerEGID,
sensorEGID,
stateMachineEGID,
stateSignalEGID,
stateTransitionEGID,
textmsgEGID,
timerEGID,
visOFbkEGID,

visRawCameraEGID,
visInterleaveEGID,
visJPEGEGID,
visPNGEGID,
visSegmentEGID,
visRLEEGID,
visRegionEGID,
visObjEGID,
wmVarEGID,
worldModelEGID,

The value and meaning of the event’s ‘source’ field is defined
by its generator, but the ‘type’ field is restricted to one of
activateETID, statusETID, or deactivateETID.


	 Building
	Environment Variables
	Build Targets

	 Execution
	Console
	Controller

	 Model Specification
	Output Offsets
	Reference Frames
	Buttons
	Sensors
	Limits

	 Development
	Events


