Homepage Demos Overview Downloads Tutorials Reference
Credits

ROBOOP Namespace Reference


Classes

class  ROBOOP::Clik
 Handle Closed Loop Inverse Kinematics scheme. More...
struct  ROBOOP::Data
 Basic data element used in Config class. More...
class  ROBOOP::Config
 Handle configuration files. More...
class  ROBOOP::Control_Select
 Select controller class. More...
class  ROBOOP::Impedance
 Impedance controller class. More...
class  ROBOOP::Resolved_acc
 Resolved rate acceleration controller class. More...
class  ROBOOP::Computed_torque_method
 Computer torque method controller class. More...
class  ROBOOP::Proportional_Derivative
 Proportional derivative controller class. More...
class  ROBOOP::Dynamics
 Dynamics simulation handling class. More...
class  ROBOOP::GNUcurve
 Object for one curve. More...
class  ROBOOP::Plot2d
 2d plot object. More...
class  ROBOOP::IO_matrix_file
 Read and write data at every iterations in a file. More...
class  ROBOOP::Plot_file
 Creates a graphic from a data file. More...
class  ROBOOP::Quaternion
 Quaternion class definition. More...
class  ROBOOP::Link
 Link definitions. More...
class  ROBOOP::Robot_basic
 Virtual base robot class. More...
class  ROBOOP::Robot
 DH notation robot class. More...
class  ROBOOP::mRobot
 Modified DH notation robot class. More...
class  ROBOOP::mRobot_min_para
 Modified DH notation and minimal inertial parameters robot class. More...
class  ROBOOP::Spl_cubic
 Natural cubic splines class. More...
class  ROBOOP::Spl_path
 Cartesian or joint space trajectory. More...
class  ROBOOP::Spl_Quaternion
 Cubic quaternions spline. More...
class  ROBOOP::Trajectory_Select
 Trajectory class selection. More...

Typedefs

typedef ROBOOP::Data Data
 Basic data element used in Config class.
typedef vector< DataConf_data
 Configuration data type.
typedef map< Real, ColumnVector,
less< Real > > 
point_map
 Data at control points.
typedef map< Real, Quaternion,
less< Real > > 
quat_map
 Data at control points.

Functions

short set_plot2d (const char *title_graph, const char *x_axis_title, const char *y_axis_title, const char *label, int type, const Matrix &xdata, const Matrix &ydata, int start_y, int end_y)
short set_plot2d (const char *title_graph, const char *x_axis_title, const char *y_axis_title, const vector< char * > label, int type, const Matrix &xdata, const Matrix &ydata, const vector< int > &data_select)
ReturnMatrix trans (const ColumnVector &a)
 Translation.
ReturnMatrix rotx (const Real alpha)
 Rotation around x axis.
ReturnMatrix roty (const Real beta)
 Rotation around x axis.
ReturnMatrix rotz (const Real gamma)
 Rotation around z axis.
ReturnMatrix rotk (const Real theta, const ColumnVector &k)
 Rotation around arbitrary axis.
ReturnMatrix rpy (const ColumnVector &a)
 Roll Pitch Yaw rotation.
ReturnMatrix eulzxz (const ColumnVector &a)
 Euler ZXZ rotation.
ReturnMatrix rotd (const Real theta, const ColumnVector &k1, const ColumnVector &k2)
 Rotation around an arbitrary line.
ReturnMatrix irotk (const Matrix &R)
 Obtain axis from a rotation matrix.
ReturnMatrix irpy (const Matrix &R)
 Obtain Roll, Pitch and Yaw from a rotation matrix.
ReturnMatrix ieulzxz (const Matrix &R)
 Obtain Roll, Pitch and Yaw from a rotation matrix.
ReturnMatrix Omega (const Quaternion &q, const Quaternion &q_dot)
 Return angular velocity from a quaternion and it's time derivative.
short Integ_quat (Quaternion &dquat_present, Quaternion &dquat_past, Quaternion &quat, const Real dt)
 Trapezoidal quaternion integration.
Real Integ_Trap_quat_s (const Quaternion &present, Quaternion &past, const Real dt)
 Trapezoidal quaternion scalar part integration.
ReturnMatrix Integ_Trap_quat_v (const Quaternion &present, Quaternion &past, const Real dt)
 Trapezoidal quaternion vector part integration.
Quaternion Slerp (const Quaternion &q0, const Quaternion &q1, const Real t)
 Spherical Linear Interpolation.
Quaternion Slerp_prime (const Quaternion &q0, const Quaternion &q1, const Real t)
 Spherical Linear Interpolation derivative.
Quaternion Squad (const Quaternion &p, const Quaternion &a, const Quaternion &b, const Quaternion &q, const Real t)
 Spherical Cubic Interpolation.
Quaternion Squad_prime (const Quaternion &p, const Quaternion &a, const Quaternion &b, const Quaternion &q, const Real t)
 Spherical Cubic Interpolation derivative.
void perturb_robot (Robot_basic &robot, const double f)
 Modify a robot.
bool Puma_DH (const Robot_basic *robot)
 Return true if the robot is like a Puma on DH notation.
bool Rhino_DH (const Robot_basic *robot)
 Return true if the robot is like a Rhino on DH notation.
bool ERS_Leg_DH (const Robot_basic *robot)
 Return true if the robot is like the leg chain of an AIBO on DH notation.
bool ERS2xx_Head_DH (const Robot_basic *robot)
 Return true if the robot is like the camera chain of a 200 series AIBO on DH notation.
bool ERS7_Head_DH (const Robot_basic *robot)
 Return true if the robot is like the camera or mouth chain of a 7 model AIBO on DH notation.
bool Puma_mDH (const Robot_basic *robot)
 Return true if the robot is like a Puma on modified DH notation.
bool Rhino_mDH (const Robot_basic *robot)
 Return true if the robot is like a Rhino on modified DH notation.
ReturnMatrix x_prod_matrix (const ColumnVector &x)
 Cross product matrix.
ReturnMatrix Integ_Trap (const ColumnVector &present, ColumnVector &past, const Real dt)
 Trapezoidal integration.
void Runge_Kutta4_Real_time (ReturnMatrix(*xdot)(Real time, const Matrix &xin, bool &exit, bool &init), const Matrix &xo, Real to, Real tf, int nsteps)
 Fixed step size fourth-order Runge-Kutta integrator.
void Runge_Kutta4_Real_time (ReturnMatrix(*xdot)(const Real time, const Matrix &xin), const Matrix &xo, const Real to, const Real tf, const int nsteps)
void Runge_Kutta4 (ReturnMatrix(*xdot)(Real time, const Matrix &xin), const Matrix &xo, Real to, Real tf, int nsteps, RowVector &tout, Matrix &xout)
 Fixed step size fourth-order Runge-Kutta integrator.
ReturnMatrix rk4 (const Matrix &x, const Matrix &dxdt, Real t, Real h, ReturnMatrix(*xdot)(Real time, const Matrix &xin))
 Compute one Runge-Kutta fourth order step.
void rkqc (Matrix &x, Matrix &dxdt, Real &t, Real htry, Real eps, Matrix &xscal, Real &hdid, Real &hnext, ReturnMatrix(*xdot)(Real time, const Matrix &xin))
 Compute one adaptive step based on two rk4.
void odeint (ReturnMatrix(*xdot)(Real time, const Matrix &xin), Matrix &xo, Real to, Real tf, Real eps, Real h1, Real hmin, int &nok, int &nbad, RowVector &tout, Matrix &xout, Real dtsav)
 Integrate the ordinary differential equation xdot from time to to time tf using an adaptive step size strategy.
ReturnMatrix sign (const Matrix &x)
 Sign of a matrix.
short sign (const Real x)
 Sign of real.
void Runge_Kutta4_Real_time (ReturnMatrix(*xdot)(Real time, const Matrix &xin), const Matrix &xo, Real to, Real tf, int nsteps)

Variables

char * curvetype []
Real fourbyfourident [] = {1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0}
 Used to initialize a $4\times 4$ matrix.
Real threebythreeident [] = {1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0}
 Used to initialize a $3\times 3$ matrix.


Typedef Documentation

typedef vector< Data > ROBOOP::Conf_data
 

Configuration data type.

Definition at line 101 of file config.h.

typedef struct ROBOOP::Data ROBOOP::Data
 

Basic data element used in Config class.

typedef map< Real, ColumnVector, less< Real > > ROBOOP::point_map
 

Data at control points.

Definition at line 114 of file trajectory.h.

Referenced by ROBOOP::Spl_path::Spl_path().

typedef map< Real, Quaternion, less< Real > > ROBOOP::quat_map
 

Data at control points.

Definition at line 143 of file trajectory.h.


Function Documentation

bool ROBOOP::ERS2xx_Head_DH const Robot_basic *  robot  ) 
 

Return true if the robot is like the camera chain of a 200 series AIBO on DH notation.

Definition at line 1711 of file robot.cpp.

Referenced by ROBOOP::Robot::robotType_inv_kin().

bool ROBOOP::ERS7_Head_DH const Robot_basic *  robot  ) 
 

Return true if the robot is like the camera or mouth chain of a 7 model AIBO on DH notation.

Definition at line 1730 of file robot.cpp.

Referenced by ROBOOP::Robot::robotType_inv_kin().

bool ROBOOP::ERS_Leg_DH const Robot_basic *  robot  ) 
 

Return true if the robot is like the leg chain of an AIBO on DH notation.

Definition at line 1695 of file robot.cpp.

Referenced by ROBOOP::Robot::robotType_inv_kin().

ReturnMatrix ROBOOP::eulzxz const ColumnVector &  a  ) 
 

Euler ZXZ rotation.

Definition at line 203 of file homogen.cpp.

ReturnMatrix ROBOOP::ieulzxz const Matrix &  R  ) 
 

Obtain Roll, Pitch and Yaw from a rotation matrix.

Definition at line 286 of file homogen.cpp.

short ROBOOP::Integ_quat Quaternion &  dquat_present,
Quaternion &  dquat_past,
Quaternion &  quat,
const Real  dt
 

Trapezoidal quaternion integration.

Definition at line 583 of file quaternion.cpp.

Referenced by ROBOOP::Impedance::control().

ReturnMatrix ROBOOP::Integ_Trap const ColumnVector &  present,
ColumnVector &  past,
const Real  dt
 

Trapezoidal integration.

Definition at line 76 of file utils.cpp.

Referenced by ROBOOP::Impedance::control(), and ROBOOP::Clik::q_qdot().

Real ROBOOP::Integ_Trap_quat_s const Quaternion &  present,
Quaternion &  past,
const Real  dt
 

Trapezoidal quaternion scalar part integration.

Definition at line 610 of file quaternion.cpp.

Referenced by Integ_quat().

ReturnMatrix ROBOOP::Integ_Trap_quat_v const Quaternion &  present,
Quaternion &  past,
const Real  dt
 

Trapezoidal quaternion vector part integration.

Definition at line 619 of file quaternion.cpp.

Referenced by Integ_quat().

ReturnMatrix ROBOOP::irotk const Matrix &  R  ) 
 

Obtain axis from a rotation matrix.

Definition at line 245 of file homogen.cpp.

ReturnMatrix ROBOOP::irpy const Matrix &  R  ) 
 

Obtain Roll, Pitch and Yaw from a rotation matrix.

Definition at line 263 of file homogen.cpp.

void ROBOOP::odeint ReturnMatrix(*)(Real time, const Matrix &xin)  xdot,
Matrix &  xo,
Real  to,
Real  tf,
Real  eps,
Real  h1,
Real  hmin,
int &  nok,
int &  nbad,
RowVector &  tout,
Matrix &  xout,
Real  dtsav
 

Integrate the ordinary differential equation xdot from time to to time tf using an adaptive step size strategy.

adapted from: Numerical Recipes in C, The Art of Scientific Computing, Press, William H. and Flannery, Brian P. and Teukolsky, Saul A. and Vetterling, William T., Cambridge University Press, 1988.

Definition at line 258 of file utils.cpp.

ReturnMatrix ROBOOP::Omega const Quaternion &  q,
const Quaternion &  q_dot
 

Return angular velocity from a quaternion and it's time derivative.

See Quaternion::dot for explanation.

Definition at line 558 of file quaternion.cpp.

Referenced by ROBOOP::Spl_Quaternion::quat_w().

void ROBOOP::perturb_robot Robot_basic &  robot,
const double  f = 0.1
 

Modify a robot.

Parameters:
robot: Robot_basic reference.
f: Percentage of erreur between 0 and 1.
f represents an error to added on the robot inertial parameter. f is between 0 (no error) and 1 (100% error).

Definition at line 1595 of file robot.cpp.

bool ROBOOP::Puma_DH const Robot_basic *  robot  ) 
 

Return true if the robot is like a Puma on DH notation.

Compare the robot DH table with the Puma DH table. The function return true if the tables are similar (same alpha and similar a and d parameters).

Definition at line 1628 of file robot.cpp.

Referenced by ROBOOP::Robot::robotType_inv_kin().

bool ROBOOP::Puma_mDH const Robot_basic *  robot  ) 
 

Return true if the robot is like a Puma on modified DH notation.

Compare the robot DH table with the Puma DH table. The function return true if the tables are similar (same alpha and similar a and d parameters).

Definition at line 1750 of file robot.cpp.

Referenced by ROBOOP::mRobot_min_para::robotType_inv_kin(), and ROBOOP::mRobot::robotType_inv_kin().

bool ROBOOP::Rhino_DH const Robot_basic *  robot  ) 
 

Return true if the robot is like a Rhino on DH notation.

Compare the robot DH table with the Puma DH table. The function return true if the tables are similar (same alpha and similar a and d parameters).

Definition at line 1662 of file robot.cpp.

Referenced by ROBOOP::Robot::robotType_inv_kin().

bool ROBOOP::Rhino_mDH const Robot_basic *  robot  ) 
 

Return true if the robot is like a Rhino on modified DH notation.

Compare the robot DH table with the Puma DH table. The function return true if the tables are similar (same alpha and similar a and d parameters).

Definition at line 1784 of file robot.cpp.

Referenced by ROBOOP::mRobot_min_para::robotType_inv_kin(), and ROBOOP::mRobot::robotType_inv_kin().

ReturnMatrix rk4 const Matrix &  x,
const Matrix &  dxdt,
Real  t,
Real  h,
ReturnMatrix(*)(Real time, const Matrix &xin)  xdot
 

Compute one Runge-Kutta fourth order step.

adapted from: Numerical Recipes in C, The Art of Scientific Computing, Press, William H. and Flannery, Brian P. and Teukolsky, Saul A. and Vetterling, William T., Cambridge University Press, 1988.

Definition at line 171 of file utils.cpp.

Referenced by rkqc().

void rkqc Matrix &  x,
Matrix &  dxdt,
Real t,
Real  htry,
Real  eps,
Matrix &  xscal,
Real hdid,
Real hnext,
ReturnMatrix(*)(Real time, const Matrix &xin)  xdot
 

Compute one adaptive step based on two rk4.

adapted from: Numerical Recipes in C, The Art of Scientific Computing, Press, William H. and Flannery, Brian P. and Teukolsky, Saul A. and Vetterling, William T., Cambridge University Press, 1988.

Definition at line 206 of file utils.cpp.

Referenced by odeint().

ReturnMatrix ROBOOP::rotd const Real  theta,
const ColumnVector &  k1,
const ColumnVector &  k2
 

Rotation around an arbitrary line.

Definition at line 232 of file homogen.cpp.

ReturnMatrix ROBOOP::rotk const Real  theta,
const ColumnVector &  k
 

Rotation around arbitrary axis.

Definition at line 141 of file homogen.cpp.

Referenced by rotd().

ReturnMatrix ROBOOP::rotx const Real  alpha  ) 
 

Rotation around x axis.

Definition at line 79 of file homogen.cpp.

ReturnMatrix ROBOOP::roty const Real  beta  ) 
 

Rotation around x axis.

Definition at line 99 of file homogen.cpp.

ReturnMatrix ROBOOP::rotz const Real  gamma  ) 
 

Rotation around z axis.

Definition at line 119 of file homogen.cpp.

ReturnMatrix ROBOOP::rpy const ColumnVector &  a  ) 
 

Roll Pitch Yaw rotation.

Definition at line 174 of file homogen.cpp.

void ROBOOP::Runge_Kutta4 ReturnMatrix(*)(Real time, const Matrix &xin)  xdot,
const Matrix &  xo,
Real  to,
Real  tf,
int  nsteps,
RowVector &  tout,
Matrix &  xout
 

Fixed step size fourth-order Runge-Kutta integrator.

Definition at line 143 of file utils.cpp.

void Runge_Kutta4_Real_time ReturnMatrix(*)(Real time, const Matrix &xin)  xdot,
const Matrix &  xo,
Real  to,
Real  tf,
int  nsteps
 

void Runge_Kutta4_Real_time ReturnMatrix(*)(const Real time, const Matrix &xin)  xdot,
const Matrix &  xo,
const Real  to,
const Real  tf,
const int  nsteps
 

Definition at line 118 of file utils.cpp.

void ROBOOP::Runge_Kutta4_Real_time ReturnMatrix(*)(Real time, const Matrix &xin, bool &exit, bool &init)  xdot,
const Matrix &  xo,
Real  to,
Real  tf,
int  nsteps
 

Fixed step size fourth-order Runge-Kutta integrator.

Definition at line 89 of file utils.cpp.

short ROBOOP::set_plot2d const char *  title_graph,
const char *  x_axis_title,
const char *  y_axis_title,
const vector< char * >  label,
int  type,
const Matrix &  xdata,
const Matrix &  ydata,
const vector< int > &  data_select
 

Definition at line 714 of file gnugraph.cpp.

short ROBOOP::set_plot2d const char *  title_graph,
const char *  x_axis_title,
const char *  y_axis_title,
const char *  label,
int  type,
const Matrix &  xdata,
const Matrix &  ydata,
int  start_y,
int  end_y
 

Definition at line 675 of file gnugraph.cpp.

short ROBOOP::sign const Real  x  ) 
 

Sign of real.

Definition at line 336 of file utils.cpp.

ReturnMatrix ROBOOP::sign const Matrix &  x  ) 
 

Sign of a matrix.

Definition at line 317 of file utils.cpp.

Referenced by ROBOOP::mRobot_min_para::C(), ROBOOP::mRobot::C(), ROBOOP::Robot::C(), ROBOOP::mRobot_min_para::torque(), ROBOOP::mRobot::torque(), and ROBOOP::Robot::torque().

Quaternion ROBOOP::Slerp const Quaternion &  q0,
const Quaternion &  q1,
const Real  t
 

Spherical Linear Interpolation.

Cite_:Dam

The quaternion $q(t)$ interpolate the quaternions $q_0$ and $q_1$ given the parameter $t$ along the quaternion sphere.

\[ q(t) = c_0(t)q_0 + c_1(t)q_1 \]

where $c_0$ and $c_1$ are real functions with $0\leq t \leq 1$. As $t$ varies between 0 and 1. the values $q(t)$ varies uniformly along the circular arc from $q_0$ and $q_1$. The angle between $q(t)$ and $q_0$ is $\cos(t\theta)$ and the angle between $q(t)$ and $q_1$ is $\cos((1-t)\theta)$. Taking the dot product of $q(t)$ and $q_0$ yields

\[ \cos(t\theta) = c_0(t) + \cos(\theta)c_1(t) \]

and taking the dot product of $q(t)$ and $q_1$ yields

\[ \cos((1-t)\theta) = \cos(\theta)c_0(t) + c_1(t) \]

These are two equations with $c_0$ and $c_1$. The solution is

\[ c_0 = \frac{\sin((1-t)\theta)}{\sin(\theta)} \]

\[ c_1 = \frac{\sin(t\theta)}{sin(\theta)} \]

The interpolation is then

\[ Slerp(q_0, q_1, t) = \frac{q_0\sin((1-t)\theta)+q_1\sin(t\theta)}{\sin(\theta)} \]

If $q_0$ and $q_1$ are unit quaternions the $q(t)$ is also a unit quaternions. For unit quaternions we have

\[ Slerp(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t \]

For t = 0 and t = 1 we have

\[ q_0 = Slerp(q_0, q_1, 0) \]

\[ q_1 = Slerp(q_0, q_1, 1) \]

It is customary to choose the sign G on q1 so that q0.Gq1 >=0 (the angle between q0 ang Gq1 is acute). This choice avoids extra spinning caused by the interpolated rotations.

Definition at line 629 of file quaternion.cpp.

Referenced by ROBOOP::Spl_Quaternion::quat(), ROBOOP::Spl_Quaternion::quat_w(), Slerp_prime(), Squad(), and Squad_prime().

Quaternion ROBOOP::Slerp_prime const Quaternion &  q0,
const Quaternion &  q1,
const Real  t
 

Spherical Linear Interpolation derivative.

Cite_: Dam

The derivative of the function $q^t$ where $q$ is a constant unit quaternion is

\[ \frac{d}{dt}q^t = q^t log(q) \]

Using the preceding equation the Slerp derivative is then

\[ Slerp'(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t log(q_0^{-1}q_1) \]

It is customary to choose the sign G on q1 so that q0.Gq1 >=0 (the angle between q0 ang Gq1 is acute). This choice avoids extra spinning caused by the interpolated rotations. The result is not necessary a unit quaternion.

Definition at line 690 of file quaternion.cpp.

Referenced by ROBOOP::Spl_Quaternion::quat_w().

Quaternion ROBOOP::Squad const Quaternion &  p,
const Quaternion &  a,
const Quaternion &  b,
const Quaternion &  q,
const Real  t
 

Spherical Cubic Interpolation.

Cite_: Dam

Let four quaternions be $q_i$ (p), $s_i$ (a), $s_{i+1}$ (b) and $q_{i+1}$ (q) be the ordered vertices of a quadrilateral. Obtain c from $q_i$ to $q_{i+1}$ interpolation. Obtain d from $s_i$ to $s_{i+1}$ interpolation. Obtain e, the final result, from c to d interpolation.

\[ Squad(q_i, s_i, s_{i+1}, q_{i+1}, t) = Slerp(Slerp(q_i,q_{i+1},t),Slerp(s_i,s_{i+1},t), 2t(1-t)) \]

The intermediate quaternion $s_i$ and $s_{i+1}$ are given by

\[ s_i = q_i exp\Big ( - \frac{log(q_i^{-1}q_{i+1}) + log(q_i^{-1}q_{i-1})}{4}\Big ) \]

Definition at line 723 of file quaternion.cpp.

Referenced by ROBOOP::Spl_Quaternion::quat(), and ROBOOP::Spl_Quaternion::quat_w().

Quaternion ROBOOP::Squad_prime const Quaternion &  p,
const Quaternion &  a,
const Quaternion &  b,
const Quaternion &  q,
const Real  t
 

Spherical Cubic Interpolation derivative.

Cite_: www.magic-software.com

The derivative of the function $q^t$ where $q$ is a constant unit quaternion is

\[ \frac{d}{dt}q^t = q^t log(q) \]

Recalling that $log(q) = [0, v\theta]$ (see Quaternion::Log()). If the power is a function we have

\[ \frac{d}{dt}q^{f(t)} = f'(t)q^{f(t)}log(q) \]

If $q$ is a function of time and the power is differentiable function of time we have

\[ \frac{d}{dt}(q(t))^{f(t)} = f'(t)(q(t))^{f(t)}log(q) + f(t)(q(t))^{f(t)-1}q'(t) \]

Using these last three equations Squad derivative can be define. Let $U(t)=Slerp(p,q,t)$, $V(t)=Slerp(q,b,t)$, $W(t)=U(t)^{-1}V(t)$. We then have $Squad(p,a,b,q,t)=Slerp(U(t),V(t),2t(1-t))=U(t)W(t)^{2t(1-t)}$

\[ Squad'(p,a,b,q,t) = \frac{d}{dt}\Big [ UW^{2t(1-t)}\Big ] \]

\[ Squad'(p,a,b,q,t) = U\frac{d}{dt}\Big [ W^{2t(1-t)}\Big ] + U'\Big [W^{2t(1-t)}\Big] \]

\[ Squad'(p,a,b,q,t) = U\Big[(2-4t)W^{2t(1-t)}log(W)+2t(1-t)W^{2t(1-t)-1}W'\Big] + U'\Big[W^{2t(1-t)} \Big] \]

where $U'=Ulog(p^{-1}q)$, $V'=Vlog(a^{-1},b)$, $W'=U^{-1}V'-U^{-2}U'V$

The result is not necessarily a unit quaternion even if all the input quaternions are unit.

Definition at line 749 of file quaternion.cpp.

Referenced by ROBOOP::Spl_Quaternion::quat_w().

ReturnMatrix ROBOOP::trans const ColumnVector &  a  ) 
 

Translation.

Definition at line 59 of file homogen.cpp.

Referenced by rotd().

ReturnMatrix ROBOOP::x_prod_matrix const ColumnVector &  x  ) 
 

Cross product matrix.

Definition at line 64 of file utils.cpp.

Referenced by ROBOOP::Quaternion::E(), ROBOOP::Clik::endeff_pos_ori_err(), ROBOOP::Quaternion::R(), ROBOOP::Quaternion::T(), and ROBOOP::Resolved_acc::torque_cmd().


Variable Documentation

char* ROBOOP::curvetype[]
 

Initial value:

   {"lines",
    "points",
    "linespoints",
    "impulses",
    "dots",
    "steps",
    "boxes"}

Definition at line 73 of file gnugraph.cpp.

Referenced by ROBOOP::GNUcurve::dump(), and ROBOOP::Plot2d::gnuplot().

Real ROBOOP::fourbyfourident = {1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0}
 

Used to initialize a $4\times 4$ matrix.

Definition at line 106 of file robot.cpp.

Real ROBOOP::threebythreeident = {1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0}
 

Used to initialize a $3\times 3$ matrix.

Definition at line 109 of file robot.cpp.


ROBOOP v1.21a
Generated Tue Oct 19 14:18:29 2004 by Doxygen 1.3.9.1