Homepage Demos Overview Downloads Tutorials Reference
Credits

ROBOOP::Robot Class Reference

#include <robot.h>

Inheritance diagram for ROBOOP::Robot:

Inheritance graph
[legend]
List of all members.

Detailed Description

DH notation robot class.

Definition at line 386 of file robot.h.

Public Member Functions

 Robot (const int ndof=1)
 Constructor.
 Robot (const Matrix &initrobot)
 Constructor.
 Robot (const Matrix &initrobot, const Matrix &initmotor)
 Constructor.
 Robot (const Robot &x)
 Copy constructor.
 Robot (const string &filename, const string &robotName)
 Constructor.
 Robot (const Config &robData, const string &robotName)
 ~Robot ()
 Destructor.
Robotoperator= (const Robot &x)
 Overload = operator.
virtual void robotType_inv_kin ()
 Identify inverse kinematics familly.
virtual void kine_pd (Matrix &Rot, ColumnVector &pos, ColumnVector &pos_dot, const int ref) const
 Direct kinematics with velocity.
virtual ReturnMatrix inv_kin (const Matrix &Tobj, const int mj=0)
 Overload inv_kin function.
virtual ReturnMatrix inv_kin (const Matrix &Tobj, const int mj, bool &converge)
 Numerical inverse kinematics. See inv_kin(const Matrix & Tobj, const int mj, const int endlink, bool & converge).
virtual ReturnMatrix inv_kin (const Matrix &Tobj, const int mj, const int endlink, bool &converge)
 Inverse kinematics solutions.
virtual ReturnMatrix inv_kin_pos (const ColumnVector &Pobj, const int mj, const int endlink, const ColumnVector &Plink, bool &converge)
 Inverse kinematics solutions.
virtual ReturnMatrix inv_kin_orientation (const Matrix &Robj, const int mj, const int endlink, bool &converge)
 Inverse kinematics solutions.
virtual ReturnMatrix inv_kin_rhino (const Matrix &Tobj, bool &converge)
 Analytic Rhino inverse kinematics.
virtual ReturnMatrix inv_kin_puma (const Matrix &Tobj, bool &converge)
 Analytic Puma inverse kinematics.
virtual ReturnMatrix inv_kin_ers_pos (const ColumnVector &Pobj, const int endlink, const ColumnVector &Plink, bool &converge)
virtual ReturnMatrix jacobian (const int ref=0) const
 Jacobian of mobile links expressed at frame ref.
virtual ReturnMatrix jacobian (const int endlink, const int ref) const
 Jacobian of mobile links up to endlink expressed at frame ref.
virtual ReturnMatrix jacobian_dot (const int ref=0) const
 Jacobian derivative of mobile joints expressed at frame ref.
virtual void dTdqi (Matrix &dRot, ColumnVector &dpos, const int i)
 Partial derivative of the robot position (homogeneous transf.) See dTdqi(Matrix & dRot, ColumnVector & dpos, const int i, const int endlink).
virtual ReturnMatrix dTdqi (const int i)
 Partial derivative of the robot position (homogeneous transf.) See dTdqi(Matrix & dRot, ColumnVector & dpos, const int i, const int endlink).
virtual void dTdqi (Matrix &dRot, ColumnVector &dpos, const int i, const int endlink)
 Partial derivative of the robot position (homogeneous transf.).
virtual ReturnMatrix dTdqi (const int i, const int endlink)
 Partial derivative of the robot position (homogeneous transf.).
virtual ReturnMatrix torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp)
 Joint torque, without contact force, based on Recursive Newton-Euler formulation.
virtual ReturnMatrix torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &Fext_, const ColumnVector &Next_)
 Joint torque based on Recursive Newton-Euler formulation.
virtual ReturnMatrix torque_novelocity (const ColumnVector &qpp)
 Joint torque. when joint velocity is 0, based on Recursive Newton-Euler formulation.
virtual void delta_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &dq, const ColumnVector &dqp, const ColumnVector &dqpp, ColumnVector &ltorque, ColumnVector &dtorque)
 Delta torque dynamics.
virtual void dq_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &qpp, const ColumnVector &dq, ColumnVector &torque, ColumnVector &dtorque)
 Delta torque due to delta joint position.
virtual void dqp_torque (const ColumnVector &q, const ColumnVector &qp, const ColumnVector &dqp, ColumnVector &torque, ColumnVector &dtorque)
 Delta torque due to delta joint velocity.
virtual ReturnMatrix G ()
 Joint torque due to gravity based on Recursive Newton-Euler formulation.
virtual ReturnMatrix C (const ColumnVector &qp)
 Joint torque due to centrifugal and Corriolis based on Recursive Newton-Euler formulation.

Protected Member Functions

Real computeFirstERSLink (int curlink, const ColumnVector &Pobj, const int endlink, const ColumnVector &Plink, Real min, Real max, bool &converge)
Real computeSecondERSLink (int curlink, const ColumnVector &Pobj, const int endlink, const ColumnVector &Plink, bool invert, Real min, Real max, bool &converge)
Real computeThirdERSLink (int curlink, const ColumnVector &Pobj, const int endlink, const ColumnVector &Plink, bool invert, Real min, Real max, bool &converge)


Constructor & Destructor Documentation

ROBOOP::Robot::Robot const int  ndof = 1  )  [explicit]
 

Constructor.

Definition at line 1340 of file robot.cpp.

ROBOOP::Robot::Robot const Matrix dhinit  )  [explicit]
 

Constructor.

Definition at line 1349 of file robot.cpp.

ROBOOP::Robot::Robot const Matrix initrobot,
const Matrix initmotor
[explicit]
 

Constructor.

Definition at line 1358 of file robot.cpp.

ROBOOP::Robot::Robot const Robot x  ) 
 

Copy constructor.

Definition at line 1388 of file robot.cpp.

ROBOOP::Robot::Robot const string &  robData,
const string &  robotName
[explicit]
 

Constructor.

Definition at line 1368 of file robot.cpp.

ROBOOP::Robot::Robot const Config robData,
const string &  robotName
[explicit]
 

Definition at line 1378 of file robot.cpp.

ROBOOP::Robot::~Robot  )  [inline]
 

Destructor.

Definition at line 395 of file robot.h.


Member Function Documentation

ReturnMatrix ROBOOP::Robot::C const ColumnVector qp  )  [virtual]
 

Joint torque due to centrifugal and Corriolis based on Recursive Newton-Euler formulation.

Implements ROBOOP::Robot_basic.

Definition at line 356 of file dynamics.cpp.

Real ROBOOP::Robot::computeFirstERSLink int  curlink,
const ColumnVector Pobj,
const int  endlink,
const ColumnVector Plink,
Real  min,
Real  max,
bool &  converge
[protected]
 

Definition at line 948 of file invkine.cpp.

Referenced by computeSecondERSLink(), and inv_kin_ers_pos().

Real ROBOOP::Robot::computeSecondERSLink int  curlink,
const ColumnVector Pobj,
const int  endlink,
const ColumnVector Plink,
bool  invert,
Real  min,
Real  max,
bool &  converge
[protected]
 

Definition at line 965 of file invkine.cpp.

Referenced by inv_kin_ers_pos().

Real ROBOOP::Robot::computeThirdERSLink int  curlink,
const ColumnVector Pobj,
const int  endlink,
const ColumnVector Plink,
bool  invert,
Real  min,
Real  max,
bool &  converge
[protected]
 

Definition at line 1007 of file invkine.cpp.

Referenced by inv_kin_ers_pos().

void ROBOOP::Robot::delta_torque const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector dq,
const ColumnVector dqp,
const ColumnVector dqpp,
ColumnVector ltorque,
ColumnVector dtorque
[virtual]
 

Delta torque dynamics.

This function computes

\[ \delta \tau = D(q) \delta \ddot{q} + S_1(q,\dot{q}) \delta \dot{q} + S_2(q,\dot{q},\ddot{q}) \delta q \]

Murray and Neuman Cite_: Murray86 have developed an efficient recursive linearized Newton-Euler formulation. In order to apply the RNE as presented in let us define the following variables

\[ p_{di} = \frac{\partial p_i}{\partial d_i} = \left [ \begin{array}{ccc} 0 & \sin \alpha_i & \cos \alpha_i \end{array} \right ]^T \]

\[ Q = \left [ \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right ] \]

Forward Iterations for $i=1, 2, \ldots, n$. Initialize: $\delta \omega_0 = \delta \dot{\omega}_0 = \delta \dot{v}_0 = 0$.

\[ \delta \omega_i = R_i^T \{\delta \omega_{i-1} + \sigma_i [ z_0 \delta \dot{\theta}_i - Q(\omega_{i-1} + \dot{\theta}_i ) \delta \theta_i ] \} \]

\[ \delta \dot{\omega}_i = R_i^T \{ \delta \dot{\omega}_{i-1} + \sigma_i [z_0 \delta \ddot{\theta}_i + \delta \omega_{i-1} \times (z_0 \dot{\theta}_i ) + \omega_{i-1} \times (z_0 \delta \dot{\theta}_i )] - \sigma_i Q [ \omega_{i-1} + z_0 \ddot{\theta}_i + \omega_{i-1} \times (z_0 \dot{\theta}_i )] \delta \theta_i \} \]

\[ \delta \dot{v}_i = R_i^T \{ \delta \dot{v}_{i-1} - \sigma_i Q \dot{v}_{i-1} \delta \theta_i + (1 -\sigma_i) [z_0 \delta \ddot{d}_i + 2 \delta \omega_{i-1} \times (z_0 \dot{d}_i ) + 2 \omega_{i-1} \times (z_0 \delta \dot{d}_i )] \} + \delta \dot{\omega}_i \times p_i + \delta \omega_i \times ( \omega_i \times p_i) + \omega_i \times ( \delta \omega_i \times p_i) + (1 - \sigma_i) (\dot{\omega}_i \times p_{di} + \omega_i \times ( \omega_i \times p_{di}) ) \delta d_i \]

Backward Iterations for $i=n, n-1, \ldots, 1$. Initialize: $\delta f_{n+1} = \delta n_{n+1} = 0$.

\[ \delta \dot{v}_{ci} = \delta v_i + \delta \omega_i \times r_i + \delta \omega_i \times (\omega_i \times r_i) + \omega_i \times (\delta \omega_i \times r_i) \]

\[ \delta F_i = m_i \delta \dot{v}_{ci} \]

\[ \delta N_i = I_{ci} \delta \dot{\omega}_i + \delta \omega_i \times (I_{ci} \omega_i) + \omega_i \times (I_{ci} \delta \omega_i) \]

\[ \delta f_i = R_{i+1} [ \delta f_{i+1} ] + \delta F_{i} + \sigma_{i+1} Q R_{i+1} [ f_{i+1} ] \delta \theta_{i+1} \]

\[ \delta n_i = R_{i+1} [ \delta n_{i+1} ] + \delta N_{i} + p_{i} \times \delta f_{i} + r_{i} \times \delta F_{i} + (1 - \sigma_i) (p_{di} \times f_{i}) \delta d_i + \sigma_{i+1} Q R_{i+1} [ n_{i+1} ] \delta \theta_{i+1} \]

\[ \delta \tau_i = \sigma_i [ \delta n_i^T (R_i^T z_0) - n_i^T (R_i^T Q z_0) \delta \theta_i] + (1 -\sigma_i) [ \delta f_i^T (R_i^T z_0) ] \]

Implements ROBOOP::Robot_basic.

Definition at line 65 of file delta_t.cpp.

void ROBOOP::Robot::dq_torque const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector dq,
ColumnVector ltorque,
ColumnVector dtorque
[virtual]
 

Delta torque due to delta joint position.

This function computes $S_2(q, \dot{q}, \ddot{q})\delta q$. See Robot::delta_torque for equations.

Implements ROBOOP::Robot_basic.

Definition at line 65 of file comp_dq.cpp.

void ROBOOP::Robot::dqp_torque const ColumnVector q,
const ColumnVector qp,
const ColumnVector dqp,
ColumnVector ltorque,
ColumnVector dtorque
[virtual]
 

Delta torque due to delta joint velocity.

This function computes $S_1(q, \dot{q}, \ddot{q})\delta \dot{q}$. See Robot::delta_torque for equations.

Implements ROBOOP::Robot_basic.

Definition at line 63 of file comp_dqp.cpp.

ReturnMatrix ROBOOP::Robot::dTdqi const int  i,
const int  endlink
[virtual]
 

Partial derivative of the robot position (homogeneous transf.).

See Robot::dTdqi(Matrix & dRot, ColumnVector & dpos, const int i, const int endlink) for equations.

Implements ROBOOP::Robot_basic.

Definition at line 541 of file kinemat.cpp.

void ROBOOP::Robot::dTdqi Matrix dRot,
ColumnVector dpos,
const int  i,
const int  endlink
[virtual]
 

Partial derivative of the robot position (homogeneous transf.).

This function computes the partial derivatives:

\[ \frac{\partial{}^0 T_n}{\partial q_i} = {}^0 T_{i-1} Q_i \; {}^{i-1} T_n \]

in standard notation and

\[ \frac{\partial{}^0 T_n}{\partial q_i} = {}^0 T_{i} Q_i \; {}^{i} T_n \]

in modified notation,

with

\[ Q_i = \left [ \begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right ] \]

for a revolute joint and

\[ Q_i = \left [ \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right ] \]

for a prismatic joint.

$dRot$ and $dp$ are modified on output.

Implements ROBOOP::Robot_basic.

Definition at line 456 of file kinemat.cpp.

virtual ReturnMatrix ROBOOP::Robot::dTdqi const int  i  )  [inline, virtual]
 

Partial derivative of the robot position (homogeneous transf.) See dTdqi(Matrix & dRot, ColumnVector & dpos, const int i, const int endlink).

Reimplemented from ROBOOP::Robot_basic.

Definition at line 414 of file robot.h.

virtual void ROBOOP::Robot::dTdqi Matrix dRot,
ColumnVector dpos,
const int  i
[inline, virtual]
 

Partial derivative of the robot position (homogeneous transf.) See dTdqi(Matrix & dRot, ColumnVector & dpos, const int i, const int endlink).

Reimplemented from ROBOOP::Robot_basic.

Definition at line 413 of file robot.h.

Referenced by dTdqi().

ReturnMatrix ROBOOP::Robot::G  )  [virtual]
 

Joint torque due to gravity based on Recursive Newton-Euler formulation.

Implements ROBOOP::Robot_basic.

Definition at line 317 of file dynamics.cpp.

ReturnMatrix ROBOOP::Robot::inv_kin const Matrix Tobj,
const int  mj,
const int  endlink,
bool &  converge
[virtual]
 

Inverse kinematics solutions.

The solution is based on the analytic inverse kinematics if robot type (familly) is Rhino or Puma, otherwise used the numerical algoritm defined in Robot_basic class.

Reimplemented from ROBOOP::Robot_basic.

Definition at line 584 of file invkine.cpp.

virtual ReturnMatrix ROBOOP::Robot::inv_kin const Matrix Tobj,
const int  mj,
bool &  converge
[inline, virtual]
 

Numerical inverse kinematics. See inv_kin(const Matrix & Tobj, const int mj, const int endlink, bool & converge).

Reimplemented from ROBOOP::Robot_basic.

Definition at line 401 of file robot.h.

ReturnMatrix ROBOOP::Robot::inv_kin const Matrix Tobj,
const int  mj = 0
[virtual]
 

Overload inv_kin function.

Reimplemented from ROBOOP::Robot_basic.

Definition at line 576 of file invkine.cpp.

ReturnMatrix ROBOOP::Robot::inv_kin_ers_pos const ColumnVector Pobj,
const int  endlink,
const ColumnVector Plink,
bool &  converge
[virtual]
 

Definition at line 913 of file invkine.cpp.

Referenced by inv_kin_pos().

ReturnMatrix ROBOOP::Robot::inv_kin_orientation const Matrix Robj,
const int  mj,
const int  endlink,
bool &  converge
[virtual]
 

Inverse kinematics solutions.

The solution is based on the analytic inverse kinematics if robot type (familly) is Rhino or Puma, otherwise used the numerical algoritm defined in Robot_basic class.

Reimplemented from ROBOOP::Robot_basic.

Definition at line 629 of file invkine.cpp.

ReturnMatrix ROBOOP::Robot::inv_kin_pos const ColumnVector Pobj,
const int  mj,
const int  endlink,
const ColumnVector Plink,
bool &  converge
[virtual]
 

Inverse kinematics solutions.

The solution is based on the analytic inverse kinematics if robot type (familly) is Rhino or Puma, otherwise used the numerical algoritm defined in Robot_basic class.

Reimplemented from ROBOOP::Robot_basic.

Definition at line 607 of file invkine.cpp.

ReturnMatrix ROBOOP::Robot::inv_kin_puma const Matrix Tobj,
bool &  converge
[virtual]
 

Analytic Puma inverse kinematics.

converge will be false if the desired end effector pose is outside robot range.

Implements ROBOOP::Robot_basic.

Definition at line 751 of file invkine.cpp.

Referenced by inv_kin().

ReturnMatrix ROBOOP::Robot::inv_kin_rhino const Matrix Tobj,
bool &  converge
[virtual]
 

Analytic Rhino inverse kinematics.

converge will be false if the desired end effector pose is outside robot range.

Implements ROBOOP::Robot_basic.

Definition at line 652 of file invkine.cpp.

Referenced by inv_kin().

ReturnMatrix ROBOOP::Robot::jacobian const int  endlink,
const int  ref
const [virtual]
 

Jacobian of mobile links up to endlink expressed at frame ref.

The Jacobian expressed in based frame is

\[ ^{0}J(q) = \left[ \begin{array}{cccc} ^{0}J_1(q) & ^{0}J_2(q) & \cdots & ^{0}J_n(q) \\ \end{array} \right] \]

where $^{0}J_i(q)$ is defined by

\[ ^{0}J_i(q) = \begin{array}{cc} \left[ \begin{array}{c} z_i \times ^{i}p_n \\ z_i \\ \end{array} \right] & \textrm{rotoid joint} \end{array} \]

\[ ^{0}J_i(q) = \begin{array}{cc} \left[ \begin{array}{c} z_i \\ 0 \\ \end{array} \right] & \textrm{prismatic joint} \\ \end{array} \]

Expressed in a different frame the Jacobian is obtained by

\[ ^{i}J(q) = \left[ \begin{array}{cc} ^{0}_iR^T & 0 \\ 0 & ^{0}_iR^T \end{array} \right] {^{0}}J(q) \]

Implements ROBOOP::Robot_basic.

Definition at line 559 of file kinemat.cpp.

virtual ReturnMatrix ROBOOP::Robot::jacobian const int  ref = 0  )  const [inline, virtual]
 

Jacobian of mobile links expressed at frame ref.

Reimplemented from ROBOOP::Robot_basic.

Definition at line 410 of file robot.h.

ReturnMatrix ROBOOP::Robot::jacobian_dot const int  ref = 0  )  const [virtual]
 

Jacobian derivative of mobile joints expressed at frame ref.

The Jacobian derivative expressed in based frame is

\[ ^{0}\dot{J}(q,\dot{q}) = \left[ \begin{array}{cccc} ^{0}\dot{J}_1(q,\dot{q}) & ^{0}\dot{J}_2(q,\dot{q}) & \cdots & ^{0}\dot{J}_n(q,\dot{q}) \\ \end{array} \right] \]

where $^{0}\dot{J}_i(q,\dot{q})$ is defined by

\[ ^{0}\dot{J}_i(q,\dot{q}) = \begin{array}{cc} \left[ \begin{array}{c} \omega_{i-1} \times z_i \\ \omega_{i-1} \times ^{i-1}p_n + z_i \times ^{i-1}\dot{p}_n \end{array} \right] & \textrm{rotoid joint} \end{array} \]

\[ ^{0}\dot{J}_i(q,\dot{q}) = \begin{array}{cc} \left[ \begin{array}{c} 0 \\ 0 \\ \end{array} \right] & \textrm{prismatic joint} \\ \end{array} \]

Expressed in a different frame the Jacobian derivative is obtained by

\[ ^{i}J(q) = \left[ \begin{array}{cc} ^{0}_iR^T & 0 \\ 0 & ^{0}_iR^T \end{array} \right] {^{0}}J(q) \]

Implements ROBOOP::Robot_basic.

Definition at line 655 of file kinemat.cpp.

void ROBOOP::Robot::kine_pd Matrix Rot,
ColumnVector pos,
ColumnVector pos_dot,
const int  j
const [virtual]
 

Direct kinematics with velocity.

Parameters:
Rot: Frame j rotation matrix w.r.t to the base frame.
pos: Frame j position vector wr.r.t to the base frame.
pos_dot: Frame j velocity vector w.r.t to the base frame.
j: Frame j. Print an error on the console if j is out of range.

Implements ROBOOP::Robot_basic.

Definition at line 426 of file kinemat.cpp.

Robot & ROBOOP::Robot::operator= const Robot x  ) 
 

Overload = operator.

Definition at line 1392 of file robot.cpp.

void ROBOOP::Robot::robotType_inv_kin  )  [virtual]
 

Identify inverse kinematics familly.

Identify the inverse kinematics analytic solution based on the similarity of the robot DH parameters and the DH parameters of know robots (ex: Puma, Rhino, ...). The inverse kinematics will be based on a numerical alogorithm if there is no match .

Implements ROBOOP::Robot_basic.

Definition at line 1399 of file robot.cpp.

Referenced by Robot().

ReturnMatrix ROBOOP::Robot::torque const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp,
const ColumnVector Fext,
const ColumnVector Next
[virtual]
 

Joint torque based on Recursive Newton-Euler formulation.

In order to apply the RNE as presented in Murray 86, let us define the following variables (referenced in the $i^{th}$ coordinate frame if applicable):

$\sigma_i$ is the joint type; $\sigma_i = 1$ for a revolute joint and $\sigma_i = 0$ for a prismatic joint.

$ z_0 = \left [ \begin{array}{ccc} 0 & 0 & 1 \end{array} \right ]^T$

$p_i = \left [ \begin{array}{ccc} a_i & d_i \sin \alpha_i & d_i \cos \alpha_i \end{array} \right ]^T$ is the position of the $i^{th}$ with respect to the $i-1^{th}$ frame.

Forward Iterations for $i=1, 2, \ldots, n$. Initialize: $\omega_0 = \dot{\omega}_0 = 0$ and $\dot{v}_0 = - g$.

\[ \omega_i = R_i^T [\omega_{i-1} + \sigma_i z_0 \dot{\theta}_i ] \]

\[ \dot{\omega}_i = R_i^T \{ \dot{\omega}_{i-1} + \sigma_i [z_0 \ddot{\theta}_i + \omega_{i-1} \times (z_0 \dot{\theta}_i )] \} \]

\[ \dot{v}_i = R_i^T \{ \dot{v}_{i-1} + (1 -\sigma_i) [z_0 \ddot{d}_i + 2 \omega_{i-1} \times (z_0 \dot{d}_i )] \} + \dot{\omega}_i \times p_i + \omega_i \times ( \omega_i \times p_i) \]

Backward Iterations for $i=n, n-1, \ldots, 1$. Initialize: $f_{n+1} = n_{n+1} = 0$.

\[ \dot{v}_{ci} = v_i + \omega_i \times r_i + \omega_i \times (\omega_i \times r_i) \]

\[ F_i = m_i \dot{v}_{ci} \]

\[ N_i = I_{ci} \dot{\omega}_i + \omega_i \times (I_{ci} \omega_i) \]

\[ f_i = R_{i+1} [ f_{i+1} ] + F_{i} \]

\[ n_i = R_{i+1} [ n_{i+1} ] + p_{i} \times f_{i} + N_{i} + r_{i} \times F_{i} \]

\[ \tau_i = \sigma_i n_i^T (R_i^T z_0) + (1 - \sigma_i) f_i^T (R_i^T z_0) \]

Implements ROBOOP::Robot_basic.

Definition at line 144 of file dynamics.cpp.

ReturnMatrix ROBOOP::Robot::torque const ColumnVector q,
const ColumnVector qp,
const ColumnVector qpp
[virtual]
 

Joint torque, without contact force, based on Recursive Newton-Euler formulation.

Implements ROBOOP::Robot_basic.

Definition at line 131 of file dynamics.cpp.

ReturnMatrix ROBOOP::Robot::torque_novelocity const ColumnVector qpp  )  [virtual]
 

Joint torque. when joint velocity is 0, based on Recursive Newton-Euler formulation.

Implements ROBOOP::Robot_basic.

Definition at line 268 of file dynamics.cpp.


The documentation for this class was generated from the following files:

ROBOOP v1.21a
Generated Tue Oct 19 14:18:30 2004 by Doxygen 1.3.9.1